Neonatal iron supplementation potentiates oxidative stress, energetic dysfunction and neurodegeneration in the R6/2 mouse model of Huntington's disease
نویسندگان
چکیده
Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a CAG repeat expansion that encodes a polyglutamine tract in huntingtin (htt) protein. Dysregulation of brain iron homeostasis, oxidative stress and neurodegeneration are consistent features of the HD phenotype. Therefore, environmental factors that exacerbate oxidative stress and iron dysregulation may potentiate HD. Iron supplementation in the human population is common during infant and adult-life stages. In this study, iron supplementation in neonatal HD mice resulted in deterioration of spontaneous motor running activity, elevated levels of brain lactate and oxidized glutathione consistent with increased energetic dysfunction and oxidative stress, and increased striatal and motor cortical neuronal atrophy, collectively demonstrating potentiation of the disease phenotype. Oxidative stress, energetic, and anatomic markers of degeneration were not affected in wild-type littermate iron-supplemented mice. Further, there was no effect of elevated iron intake on disease outcomes in adult HD mice. We have demonstrated an interaction between the mutant huntingtin gene and iron supplementation in neonatal HD mice. Findings indicate that elevated neonatal iron intake potentiates mouse HD and promotes oxidative stress and energetic dysfunction in brain. Neonatal-infant dietary iron intake level may be an environmental modifier of human HD.
منابع مشابه
Neonatal Iron Supplementation Induces Striatal Atrophy in Female YAC128 Huntington’s Disease Mice
BACKGROUND Dysregulation of iron homeostasis is implicated in the pathogenesis of Huntington's disease. We have previously shown that increased iron intake in R6/2 HD neonatal mice, but not adult R6/2 HD mice potentiates disease outcomes at 12-weeks of age corresponding to advanced HD [Redox Biol. 2015;4 : 363-74]. However, whether these findings extend to other HD models is unknown. In particu...
متن کاملHsp27 overexpression in the R6/2 mouse model of Huntington's disease: chronic neurodegeneration does not induce Hsp27 activation.
Huntington's disease (HD) is caused by an expanded polyglutamine tract in the huntingtin protein. Mitochondrial dysfunction and free radical damage occur in both R6/2 mice and HD patient brains and might play a role in disease pathogenesis. In cell culture systems, heat-shock protein 27 (Hsp27), a small molecular chaperone, suppresses mutant huntingtin-induced reactive oxygen species formation ...
متن کاملIRS2 increases mitochondrial dysfunction and oxidative stress in a mouse model of Huntington disease.
Aging is a major risk factor for the progression of neurodegenerative diseases, including Huntington disease (HD). Reduced neuronal IGF1 or Irs2 signaling have been shown to extend life span in mice. To determine whether Irs2 signaling modulates neurodegeneration in HD, we genetically modulated Irs2 concentrations in the R6/2 mouse model of HD. Increasing Irs2 levels in the brains of R6/2 mice ...
متن کاملPizotifen Activates ERK and Provides Neuroprotection in vitro and in vivo in Models of Huntington's Disease.
BACKGROUND Huntington's disease (HD) is a dominantly inherited neurodegenerative condition characterized by dysfunction in striatal and cortical neurons. There are currently no approved drugs known to slow the progression of HD. OBJECTIVE To facilitate the development of therapies for HD, we identified approved drugs that can ameliorate mutant huntingtin-induced toxicity in experimental model...
متن کاملOral treatment with the herbal formula B401 protects against aging-dependent neurodegeneration by attenuating oxidative stress and apoptosis in the brain of R6/2 mice
BACKGROUND Neurodegeneration is characterized by progressive neurological deficits due to selective neuronal loss in the nervous system. Huntington's disease (HD) is an incurable neurodegenerative disorder. Neurodegeneration in HD patients shows aging-dependent pattern. Our previous study has suggested that a herbal formula B401 may have neuroprotective effects in the brains of R6/2 mice. OBJ...
متن کامل